IES Management College And Research Centre

Image from Google Jackets

A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Hair, Joseph F.

By: Publication details: SAGE Publications, Inc; 2nd Revised edition edition Los Angeles 2017Description: XX, 363Subject(s): DDC classification:
  • 511.42 Har/Hut
Contents:
Chapter 1: An Introduction to Structural Equation Modeling What Is Structural Equation Modeling? Considerations in Using Structural Equation Modeling Structural Equation Modeling With Partial Least Squares Path Modeling PLS-SEM, CB-SEM, and Regressions Based on Sum Scores Organization of Remaining Chapters Chapter 2: Specifying the Path Model and Examining Data Stage 1: Specifying the Structural Model Stage 2: Specifying the Measurement Models Stage 3: Data Collection and Examination Case Study Illustration: Specifying the PLS-SEM Model Path Model Creation Using the SmartPLS Software Chapter 3: Path Model Estimation Stage 4: Model Estimation and the PLS-SEM Algorithm Case Study Illustration: PLS Path Model Estimation (Stage 4) Chapter 4: Assessing PLS-SEM Results Part I: Evaluation of Reflective Measurement Models Overview of Stage 5: Evaluation of Measurement Models Stage 5a: Assessing Results of Reflective Measurement Models Case Study Illustration—Reflective Measurement Models Running the PLS-SEM Algorithm Reflective Measurement Model Evaluation Chapter 5: Assessing PLS-SEM Results Part II: Evaluation of the Formative Measurement Models Stage 5b: Assessing Results of Formative Measurement Models Bootstrapping Procedure Bootstrap Confidence Intervals Case Study Illustration—Evaluation of Formative Measurement Models Chapter 6: Assessing PLS-SEM Results Part III: Evaluation of the Structural Model Stage 6: Assessing PLS-SEM Structural Model Results Case Study Illustration—How Are PLS-SEM Structural Model Results Reported? Chapter 7: Mediator and Moderator Analysis Mediation Moderation Chapter 8: Outlook on Advanced Methods Importance-Performance Map Analysis Hierarchical Component Models Confirmatory Tetrad Analysis Dealing With Observed and Unobserved Heterogeneity Consistent Partial Least Squares
Summary: th applications using SmartPLS (www.smartpls.com)—the primary software used in partial least squares structural equation modeling (PLS-SEM)—this practical guide provides concise instructions on how to use this evolving statistical technique to conduct research and obtain solutions. Featuring the latest research, new examples, and expanded discussions throughout, the Second Edition is designed to be easily understood by those with limited statistical and mathematical training who want to pursue research opportunities in new ways. Please note that all examples in this Second Edition use SmartPLS 3. To access this software, please visit this link.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Reference Reference Main Library 511.42/Hai/Hut/32866 (Browse shelf(Opens below)) Not For Loan 11132866
Total holds: 0

Chapter 1: An Introduction to Structural Equation Modeling
What Is Structural Equation Modeling?
Considerations in Using Structural Equation Modeling
Structural Equation Modeling With Partial Least Squares Path Modeling
PLS-SEM, CB-SEM, and Regressions Based on Sum Scores
Organization of Remaining Chapters Chapter 2: Specifying the Path Model and Examining Data
Stage 1: Specifying the Structural Model
Stage 2: Specifying the Measurement Models
Stage 3: Data Collection and Examination
Case Study Illustration: Specifying the PLS-SEM Model
Path Model Creation Using the SmartPLS Software Chapter 3: Path Model Estimation
Stage 4: Model Estimation and the PLS-SEM Algorithm
Case Study Illustration: PLS Path Model Estimation (Stage 4) Chapter 4: Assessing PLS-SEM Results Part I: Evaluation of Reflective Measurement Models
Overview of Stage 5: Evaluation of Measurement Models
Stage 5a: Assessing Results of Reflective Measurement Models
Case Study Illustration—Reflective Measurement Models
Running the PLS-SEM Algorithm
Reflective Measurement Model Evaluation Chapter 5: Assessing PLS-SEM Results Part II: Evaluation of the Formative Measurement Models
Stage 5b: Assessing Results of Formative Measurement Models
Bootstrapping Procedure
Bootstrap Confidence Intervals
Case Study Illustration—Evaluation of Formative Measurement Models Chapter 6: Assessing PLS-SEM Results Part III: Evaluation of the Structural Model
Stage 6: Assessing PLS-SEM Structural Model Results
Case Study Illustration—How Are PLS-SEM Structural Model Results Reported? Chapter 7: Mediator and Moderator Analysis
Mediation
Moderation Chapter 8: Outlook on Advanced Methods
Importance-Performance Map Analysis
Hierarchical Component Models
Confirmatory Tetrad Analysis
Dealing With Observed and Unobserved Heterogeneity
Consistent Partial Least Squares

th applications using SmartPLS (www.smartpls.com)—the primary software used in partial least squares structural equation modeling (PLS-SEM)—this practical guide provides concise instructions on how to use this evolving statistical technique to conduct research and obtain solutions. Featuring the latest research, new examples, and expanded discussions throughout, the Second Edition is designed to be easily understood by those with limited statistical and mathematical training who want to pursue research opportunities in new ways.

Please note that all examples in this Second Edition use SmartPLS 3. To access this software, please visit this link.

There are no comments on this title.

to post a comment.

Circulation Timings: Monday to Saturday: 8:30 AM to 9:30 PM | Sundays/Bank Holiday during Examination Period: 10:00 AM to 6:00 PM