IES Management College And Research Centre

Image from Google Jackets

Advances in financial machine learning

By: Publication details: John Wiley & Sons Canada 2018Description: xxi, 366p HardboundISBN:
  • 978-1-119-48208-6
Subject(s): DDC classification:
  • 332.0285631/Lop 38585
Contents:
About the Author PREAMBLE Chapter 1 Financial Machine Learning as a Distinct Subject 1.1 Motivation 1.2 The Main Reason Financial Machine Learning Projects Usually Fail 1.3 Book Structure 1.4 Target Audience 1.5 Requisites 1.6 FAQs 1.7 Acknowledgments Exercises References Bibliography Notes PART 1 DATA ANALYSIS Chapter 2 Financial Data Structures 2.1 Motivation 2.2 Essential Types of Financial Data 2.3 Bars 2.4 Dealing with Multi-Product Series 2.5 Sampling Features Exercises References Chapter 3 Labeling 3.1 Motivation 3.2 The Fixed-Time Horizon Method 3.3 Computing Dynamic Thresholds 3.4 The Triple-Barrier Method 3.5 Learning Side and Size 3.6 Meta-Labeling 3.7 How to Use Meta-Labeling 3.8 The Quantamental Way 3.9 Dropping Unnecessary Labels Exercises Bibliography Note Chapter 4 Sample Weights 4.1 Motivation 4.2 Overlapping Outcomes 4.3 Number of Concurrent Labels 4.4 Average Uniqueness of a Label 4.5 Bagging Classifiers and Uniqueness 4.6 Return Attribution 4.7 Time Decay 4.8 Class Weights Exercises References Bibliography Chapter 5 Fractionally Differentiated Features 5.1 Motivation 5.2 The Stationarity vs. Memory Dilemma 5.3 Literature Review 5.4 The Method 5.5 Implementation 5.6 Stationarity with Maximum Memory Preservation 5.7 Conclusion Exercises References Bibliography PART 2 MODELLING Chapter 6 Ensemble Methods 6.1 Motivation 6.2 The Three Sources of Errors 6.3 Bootstrap Aggregation 6.4 Random Forest 6.5 Boosting 6.6 Bagging vs. Boosting in Finance 6.7 Bagging for Scalability Exercises References Bibliography Notes Chapter 7 Cross-Validation in Finance 7.1 Motivation 7.2 The Goal of Cross-Validation 7.3 Why K-Fold CV Fails in Finance 7.4 A Solution: Purged K-Fold CV 7.5 Bugs in Sklearn's Cross-Validation Exercises Bibliography Chapter 8 Feature Importance 8.1 Motivation 8.2 The Importance of Feature Importance 8.3 Feature Importance with Substitution Effects 8.4 Feature Importance without Substitution Effects 8.5 Parallelized vs. Stacked Feature Importance 8.6 Experiments with Synthetic Data Exercises References Note Chapter 9 Hyper-Parameter Tuning with Cross-Validation 9.1 Motivation 9.2 Grid Search Cross-Validation 9.3 Randomized Search Cross-Validation 9.4 Scoring and Hyper-parameter Tuning Exercises References Bibliography Notes PART 3 BACKTESTING Chapter 10 Bet Sizing 10.1 Motivation 10.2 Strategy-Independent Bet Sizing Approaches 10.3 Bet Sizing from Predicted Probabilities 10.4 Averaging Active Bets 10.5 Size Discretization 10.6 Dynamic Bet Sizes and Limit Prices Exercises References Bibliography Notes Chapter 11 The Dangers of Backtesting 11.1 Motivation 11.2 Mission Impossible: The Flawless Backtest 11.3 Even If Your Backtest Is Flawless, It Is Probably Wrong 11.4 Backtesting Is Not a Research Tool 11.5 A Few General Recommendations 11.6 Strategy Selection Exercises References Bibliography Note Chapter 12 Backtesting through Cross-Validation 12.1 Motivation 12.2 The Walk-Forward Method 12.3 The Cross-Validation Method 12.4 The Combinatorial Purged Cross-Validation Method 12.5 How Combinatorial Purged Cross-Validation Addresses Backtest Overfitting Exercises References Chapter 13 Backtesting on Synthetic Data 13.1 Motivation 13.2 Trading Rules 13.3 The Problem 13.4 Our Framework 13.5 Numerical Determination of Optimal Trading Rules 13.6 Experimental Results 13.7 Conclusion Exercises References Notes Chapter 14 Backtest Statistics 14.1 Motivation 14.2 Types of Backtest Statistics 14.3 General Characteristics 14.4 Performance 14.5 Runs 14.6 Implementation Shortfall 14.7 Efficiency 14.8 Classification Scores 14.9 Attribution Exercises References Bibliography Notes Chapter 15 Understanding Strategy Risk 15.1 Motivation 15.2 Symmetric Payouts 15.3 Asymmetric Payouts 15.4 The Probability of Strategy Failure Exercises References Chapter 16 Machine Learning Asset Allocation 16.1 Motivation 16.2 The Problem with Convex Portfolio Optimization 16.3 Markowitz's Curse 16.4 From Geometric to Hierarchical Relationships 16.5 A Numerical Example 16.6 Out-of-Sample Monte Carlo Simulations 16.7 Further Research 16.8 Conclusion APPENDICES 16.A.1 Correlation-based Metric 16.A.2 Inverse Variance Allocation 16.A.3 Reproducing the Numerical Example 16.A.4 Reproducing the Monte Carlo Experiment Exercises References Notes PART 4 USEFUL FINANCIAL FEATURES Chapter 17 Structural Breaks 17.1 Motivation 17.2 Types of Structural Break Tests 17.3 CUSUM Tests 17.4 Explosiveness Tests Exercises References Chapter 18 Entropy Features 18.1 Motivation 18.2 Shannon's Entropy 18.3 The Plug-in (or Maximum Likelihood) Estimator 18.4 Lempel-Ziv Estimators 18.5 Encoding Schemes 18.6 Entropy of a Gaussian Process 18.7 Entropy and the Generalized Mean 18.8 A Few Financial Applications of Entropy Exercises References Bibliography Note Chapter 19 Microstructural Features 19.1 Motivation 19.2 Review of the Literature 19.3 First Generation: Price Sequences 19.4 Second Generation: Strategic Trade Models 19.5 Third Generation: Sequential Trade Models 19.6 Additional Features from Microstructural Datasets 19.7 What Is Microstructural Information? Exercises References PART 5 HIGH-PERFORMANCE COMPUTING RECIPES Chapter 20 Multiprocessing and Vectorization 20.1 Motivation 20.2 Vectorization Example 20.3 Single-Thread vs. Multithreading vs. Multiprocessing 20.4 Atoms and Molecules 20.5 Multiprocessing Engines 20.6 Multiprocessing Example Exercises Reference Bibliography Notes Chapter 21 Brute Force and Quantum Computers 21.1 Motivation 21.2 Combinatorial Optimization 21.3 The Objective Function 21.4 The Problem 21.5 An Integer Optimization Approach 21.6 A Numerical Example Exercises References Chapter 22 High-Performance Computational Intelligence and Forecasting Technologies 22.1 Motivation 22.2 Regulatory Response to the Flash Crash of 2010 22.3 Background 22.4 HPC Hardware 22.5 HPC Software 22.6 Use Cases 22.7 Summary and Call for Participation 22.8 Acknowledgments References Notes Index EULA
Summary: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Book Book Main Library 332.0285631/Lop/38585 (Browse shelf(Opens below)) Checked out to Nicole D'SILVA (1271) Not For Loan 06/01/2025 11138585
Total holds: 0

About the Author
PREAMBLE
Chapter 1 Financial Machine Learning as a Distinct Subject
1.1 Motivation
1.2 The Main Reason Financial Machine Learning Projects Usually Fail
1.3 Book Structure
1.4 Target Audience
1.5 Requisites
1.6 FAQs
1.7 Acknowledgments
Exercises
References
Bibliography
Notes
PART 1 DATA ANALYSIS
Chapter 2 Financial Data Structures
2.1 Motivation
2.2 Essential Types of Financial Data
2.3 Bars
2.4 Dealing with Multi-Product Series
2.5 Sampling Features
Exercises
References
Chapter 3 Labeling
3.1 Motivation
3.2 The Fixed-Time Horizon Method
3.3 Computing Dynamic Thresholds
3.4 The Triple-Barrier Method
3.5 Learning Side and Size
3.6 Meta-Labeling
3.7 How to Use Meta-Labeling
3.8 The Quantamental Way
3.9 Dropping Unnecessary Labels
Exercises
Bibliography
Note
Chapter 4 Sample Weights
4.1 Motivation
4.2 Overlapping Outcomes
4.3 Number of Concurrent Labels
4.4 Average Uniqueness of a Label
4.5 Bagging Classifiers and Uniqueness
4.6 Return Attribution
4.7 Time Decay
4.8 Class Weights
Exercises
References
Bibliography
Chapter 5 Fractionally Differentiated Features
5.1 Motivation
5.2 The Stationarity vs. Memory Dilemma
5.3 Literature Review
5.4 The Method
5.5 Implementation
5.6 Stationarity with Maximum Memory Preservation
5.7 Conclusion
Exercises
References
Bibliography
PART 2 MODELLING
Chapter 6 Ensemble Methods
6.1 Motivation
6.2 The Three Sources of Errors
6.3 Bootstrap Aggregation
6.4 Random Forest
6.5 Boosting
6.6 Bagging vs. Boosting in Finance
6.7 Bagging for Scalability
Exercises
References
Bibliography
Notes
Chapter 7 Cross-Validation in Finance
7.1 Motivation
7.2 The Goal of Cross-Validation
7.3 Why K-Fold CV Fails in Finance
7.4 A Solution: Purged K-Fold CV
7.5 Bugs in Sklearn's Cross-Validation
Exercises
Bibliography
Chapter 8 Feature Importance
8.1 Motivation
8.2 The Importance of Feature Importance
8.3 Feature Importance with Substitution Effects
8.4 Feature Importance without Substitution Effects
8.5 Parallelized vs. Stacked Feature Importance
8.6 Experiments with Synthetic Data
Exercises
References
Note
Chapter 9 Hyper-Parameter Tuning with Cross-Validation
9.1 Motivation
9.2 Grid Search Cross-Validation
9.3 Randomized Search Cross-Validation
9.4 Scoring and Hyper-parameter Tuning
Exercises
References
Bibliography
Notes
PART 3 BACKTESTING
Chapter 10 Bet Sizing
10.1 Motivation
10.2 Strategy-Independent Bet Sizing Approaches
10.3 Bet Sizing from Predicted Probabilities
10.4 Averaging Active Bets
10.5 Size Discretization
10.6 Dynamic Bet Sizes and Limit Prices
Exercises
References
Bibliography
Notes
Chapter 11 The Dangers of Backtesting
11.1 Motivation
11.2 Mission Impossible: The Flawless Backtest
11.3 Even If Your Backtest Is Flawless, It Is Probably Wrong
11.4 Backtesting Is Not a Research Tool
11.5 A Few General Recommendations
11.6 Strategy Selection
Exercises
References
Bibliography
Note
Chapter 12 Backtesting through Cross-Validation
12.1 Motivation
12.2 The Walk-Forward Method
12.3 The Cross-Validation Method
12.4 The Combinatorial Purged Cross-Validation Method
12.5 How Combinatorial Purged Cross-Validation Addresses Backtest Overfitting
Exercises
References
Chapter 13 Backtesting on Synthetic Data
13.1 Motivation
13.2 Trading Rules
13.3 The Problem
13.4 Our Framework
13.5 Numerical Determination of Optimal Trading Rules
13.6 Experimental Results
13.7 Conclusion
Exercises
References
Notes
Chapter 14 Backtest Statistics
14.1 Motivation
14.2 Types of Backtest Statistics
14.3 General Characteristics
14.4 Performance
14.5 Runs
14.6 Implementation Shortfall
14.7 Efficiency
14.8 Classification Scores
14.9 Attribution
Exercises
References
Bibliography
Notes
Chapter 15 Understanding Strategy Risk
15.1 Motivation
15.2 Symmetric Payouts
15.3 Asymmetric Payouts
15.4 The Probability of Strategy Failure
Exercises
References
Chapter 16 Machine Learning Asset Allocation
16.1 Motivation
16.2 The Problem with Convex Portfolio Optimization
16.3 Markowitz's Curse
16.4 From Geometric to Hierarchical Relationships
16.5 A Numerical Example
16.6 Out-of-Sample Monte Carlo Simulations
16.7 Further Research
16.8 Conclusion
APPENDICES
16.A.1 Correlation-based Metric
16.A.2 Inverse Variance Allocation
16.A.3 Reproducing the Numerical Example
16.A.4 Reproducing the Monte Carlo Experiment
Exercises
References
Notes
PART 4 USEFUL FINANCIAL FEATURES
Chapter 17 Structural Breaks
17.1 Motivation
17.2 Types of Structural Break Tests
17.3 CUSUM Tests
17.4 Explosiveness Tests
Exercises
References
Chapter 18 Entropy Features
18.1 Motivation
18.2 Shannon's Entropy
18.3 The Plug-in (or Maximum Likelihood) Estimator
18.4 Lempel-Ziv Estimators
18.5 Encoding Schemes
18.6 Entropy of a Gaussian Process
18.7 Entropy and the Generalized Mean
18.8 A Few Financial Applications of Entropy
Exercises
References
Bibliography
Note
Chapter 19 Microstructural Features
19.1 Motivation
19.2 Review of the Literature
19.3 First Generation: Price Sequences
19.4 Second Generation: Strategic Trade Models
19.5 Third Generation: Sequential Trade Models
19.6 Additional Features from Microstructural Datasets
19.7 What Is Microstructural Information?
Exercises
References
PART 5 HIGH-PERFORMANCE COMPUTING RECIPES
Chapter 20 Multiprocessing and Vectorization
20.1 Motivation
20.2 Vectorization Example
20.3 Single-Thread vs. Multithreading vs. Multiprocessing
20.4 Atoms and Molecules
20.5 Multiprocessing Engines
20.6 Multiprocessing Example
Exercises
Reference
Bibliography
Notes
Chapter 21 Brute Force and Quantum Computers
21.1 Motivation
21.2 Combinatorial Optimization
21.3 The Objective Function
21.4 The Problem
21.5 An Integer Optimization Approach
21.6 A Numerical Example
Exercises
References
Chapter 22 High-Performance Computational Intelligence and Forecasting Technologies
22.1 Motivation
22.2 Regulatory Response to the Flash Crash of 2010
22.3 Background
22.4 HPC Hardware
22.5 HPC Software
22.6 Use Cases
22.7 Summary and Call for Participation
22.8 Acknowledgments
References
Notes
Index
EULA

Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

There are no comments on this title.

to post a comment.

Circulation Timings: Monday to Saturday: 8:30 AM to 9:30 PM | Sundays/Bank Holiday during Examination Period: 10:00 AM to 6:00 PM