IES Management College And Research Centre

Image from Google Jackets

How to Separate the Wheat from the Chaff: Improved Variable Selection for New Customer Acquisition

By: Contributor(s): Material type: TextTextDescription: 99-113 pSubject(s): In: FRAZIER GARY L. JOURNAL OF MARKETINGSummary: Steady customer losses create pressure for firms to acquire new accounts, a task that is both costly and risky. Lacking knowledge about their prospects, firms often use a large array of predictors obtained from list vendors, which in turn rapidly creates massive high-dimensional data problems. Selecting the appropriate variables and their functional relationships with acquisition probabilities is therefore a substantial challenge. This study proposes a Bayesian variable selection approach to optimally select targets for new customer acquisition. Data from an insurance company reveal that this approach outperforms nonselection methods and selection methods based on expert judgment as well as benchmarks based on principal component analysis and bootstrap aggregation of classification trees. Notably, the optimal results show that the Bayesian approach selects panel-based metrics as predictors, detects several nonlinear relationships, selects very large numbers of addresses, and generates profits. In a series of post hoc analyses, the authors consider prospects’ response behaviors and cross-selling potential and systematically vary the number of predictors and the estimated profit per response. The results reveal that more predictors and higher response rates do not necessarily lead to higher profits.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode Item holds
Journal Article Journal Article Main Library Vol 81, No 2\ 5557519JA7 (Browse shelf(Opens below)) Available 5557519JA7
Journals and Periodicals Journals and Periodicals Main Library On Display JRNL/GEN/Vol 81, No 2/5557519 (Browse shelf(Opens below)) Vol 81, No 2 (01/07/2017) Not for loan March, 2017 5557519
Total holds: 0

Steady customer losses create pressure for firms to acquire new accounts, a task that is both costly and risky. Lacking knowledge about their prospects, firms often use a large array of predictors obtained from list vendors, which in turn rapidly creates massive high-dimensional data problems. Selecting the appropriate variables and their functional relationships with acquisition probabilities is therefore a substantial challenge. This study proposes a Bayesian variable selection approach to optimally select targets for new customer acquisition. Data from an insurance company reveal that this approach outperforms nonselection methods and selection methods based on expert judgment as well as benchmarks based on principal component analysis and bootstrap aggregation of classification trees. Notably, the optimal results show that the Bayesian approach selects panel-based metrics as predictors, detects several nonlinear relationships, selects very large numbers of addresses, and generates profits. In a series of post hoc analyses, the authors consider prospects’ response behaviors and cross-selling potential and systematically vary the number of predictors and the estimated profit per response. The results reveal that more predictors and higher response rates do not necessarily lead to higher profits.

There are no comments on this title.

to post a comment.

Circulation Timings: Monday to Saturday: 8:30 AM to 9:30 PM | Sundays/Bank Holiday during Examination Period: 10:00 AM to 6:00 PM