IES Management College And Research Centre

Image from Google Jackets

Improving the Volatility Forecasts of GARCH Family Models with the Recurrent Neural Networks

By: Contributor(s): Material type: TextTextDescription: 33-50 pSubject(s): In: MURTHY, E N COMPUTER SCIENCESSummary: The primary objective of this paper is to develop a family of GARCH models, combining them with popular Recurrent Neural Network (RNN) models, which can capture the high nonlinear relationships between past return innovations and conditional variance, which is overlooked by standard GARCH models. The next objective is to apply Markov Switching GARCH model and see the differences in the predictive accuracy (according to AIC and BIG criteria and in two viewpoints: MSB and MAD) between the standard GARCH models, GJRGARCH model, RNN-GARCH models and Markov Switching GARCH model by comparing their out-of-sample forecasts. The dataset consists of a series of daily returns obtained from the National Stock Exchange (NSE) for the Indian Equity Markets. The results indicated that the proposed RNN-GARCH model and RNN-Markov Switching models are accurate and quick prediction methods.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode Item holds
Journal Article Journal Article Main Library Vol 12, No 1/ 5558566JA2 (Browse shelf(Opens below)) Available 5558566JA2
Journals and Periodicals Journals and Periodicals Main Library On Display JOURNAL/IT/Vol 12, No 1/5558566 (Browse shelf(Opens below)) Vol 12, No 1 (01/04/2018) Not for loan January, 2018 5558566
Total holds: 0

The primary objective of this paper is to develop a family of GARCH models, combining them with popular Recurrent Neural Network (RNN) models, which can capture the high nonlinear relationships between past return innovations and conditional variance, which is overlooked by standard GARCH models. The next objective is to apply Markov Switching GARCH model and see the differences in the predictive accuracy (according to AIC and BIG criteria and in two viewpoints: MSB and MAD) between the standard GARCH models, GJRGARCH model, RNN-GARCH models and Markov Switching GARCH model by comparing their out-of-sample forecasts. The dataset consists of a series of daily returns obtained from the National Stock Exchange (NSE) for the Indian Equity Markets. The results indicated that the proposed RNN-GARCH model and RNN-Markov Switching models are accurate and quick prediction methods.

There are no comments on this title.

to post a comment.

Circulation Timings: Monday to Saturday: 8:30 AM to 9:30 PM | Sundays/Bank Holiday during Examination Period: 10:00 AM to 6:00 PM