IES Management College And Research Centre

Image from Google Jackets

Bankruptcy prediction models for NSE-Listed firms: A comparative analysis

By: Material type: TextTextPublication details: Hyderabad IUP Publications December 2023Description: 5-22Subject(s): In: MURTHY, E N FINANCIAL RISK MANAGEMENTSummary: According to the Insolvency and Bankruptcy Board of India, the number of companies filing for insolvency witnessed a 30.29% jump to 3,312 in the fourth quarter of 2019. The increasing rate of company failures has prompted efforts to provide better measures to predict bankruptcy well in advance. The objective of the current study is to predict the bankruptcy of firms listed on the National Stock Exchange (NSE) using the data for three years prior to bankruptcy. The data consists of financial variables (categorized into profitability, solvency, liquidity, and activity ratios) and non-financial macroeconomic variables. To achieve this objective, the study uses predictive models such as Altman Z-score, logistic regression, support vector machine (SVM), ensemble methods, artificial neural networks, etc. It also compares the accuracy with performance measures to find the best model for the prediction of financial distress in Indian firms. The findings suggest that logistic regression model has relatively higher (96%) bankruptcy prediction ability, and SVM has the highest model accuracy of 88.54% and demonstrates great ability in predicting healthy companies.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode Item holds
Journals and Periodicals Journals and Periodicals Main Library 55514269/JA1/Fin (Browse shelf(Opens below)) Not for loan 55514269/JA1
Journals and Periodicals Journals and Periodicals Main Library On Display JOURNAL/FIN/Vol 20 No 4/55514269 (Browse shelf(Opens below)) Vol 20 No 4 (01/07/2024) Not for loan The IUP Journal of Financial Risk Management - December 2023 55514269
Total holds: 0

According to the Insolvency and Bankruptcy Board of India, the number of companies filing for insolvency witnessed a 30.29% jump to 3,312 in the fourth quarter of 2019. The increasing rate of company failures has prompted efforts to provide better measures to predict bankruptcy well in advance. The objective of the current study is to predict the bankruptcy of firms listed on the National Stock Exchange (NSE) using the data for three years prior to bankruptcy. The data consists of financial variables (categorized into profitability, solvency, liquidity, and activity ratios) and non-financial macroeconomic variables. To achieve this objective, the study uses predictive models such as Altman Z-score, logistic regression, support vector machine (SVM), ensemble methods, artificial neural networks, etc. It also compares the accuracy with performance measures to find the best model for the prediction of financial distress in Indian firms. The findings suggest that logistic regression model has relatively higher (96%) bankruptcy prediction ability, and SVM has the highest model accuracy of 88.54% and demonstrates great ability in predicting healthy companies.

There are no comments on this title.

to post a comment.

Circulation Timings: Monday to Saturday: 8:30 AM to 9:30 PM | Sundays/Bank Holiday during Examination Period: 10:00 AM to 6:00 PM